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Revolution of Depth
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Challenges For Large Deep Neural Network

Learning

Learning takes longer, might not converge, susceptible to
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How to design NN models with compact

architectures, but similar expressive power as large
models?

Popular Approaches

Compress well-trained neural networks

Find better neural network architectures

Tensorial Neural Networks (TNNs)

Achieve both compression and better architecture

Generalize
{ matrix-vector product

convolution
to general tensor

operations

New tensor algebra: extend existing operations with low order
operands to those with high order operands
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What is a tensor? How to denote tensors effectively?

Multi-dimensional Array

Tensor - Higher order matrix

The number of dimensions is called tensor
order.
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Tensor Product

=

[a⊗ b]i1,i2
ai1

bi2

=

[a⊗ b⊗ c]i1,i2,i3

ai1

bi2
ci3

[a⊗ b]i1,i2 = ai1bi2

Rank-1 matrix

[a⊗ b⊗ c]i1,i2,i3 = ai1bi2ci3

Rank-1 tensor

Existing tensor operations are only defined on lower-order X and Y

such as matrices and vectors.

7 / 25



Generalized Tensor Operations

Generalized tensor operations on High-order tensor operands

Mode-(0,1) tensor contraction
X ×0

1 Y → T 1

=X Y T 1
I0

I1

I1

I2
I2

J0

J0J1

J2
J2

I0 = J1

T 1

i1,i2,j0,j2
=

∑
r Xr,i1,i2Yj0,r,j2
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I0 = J0

T 2

j0,i1,i2
=

∑
r Xr,i1,i2Mj0,r

Mode-(0,1) tensor convolution
X ∗01 Y → T 3

=X Y T 3
I0

I1

I1

I2
I2

J0

J0J1

J2
J2

I ′0

I ′0

T 3

:,i1,i2,j0,j2
= X:,i1,i2 ∗ Yj0,:,j2

Mode-(0,1) tensor partial outer
product X ⊗0

1 Y → T 4

=X Y T 4I0

I1

I1

I2
I2

J0

J0J1

J2
J2

I0

I0

T 4

r,i1,i2,j0,j2
= Xr,i1,i2Yj0,r,j2

Similar definitions apply to general mode-(i, j) tensor operations.
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One-layer of CNN vs One-layer of TNN
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CNN vs TNN

...
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Tensorial Neural Networks

Relationship between NNs and TNNs

Gp
Hp Gq

Hq

f
Gp:compressed NN Hp:compressed TNN

Gq: NN Hq: TNN
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hq is closer to f than gq

Compression of gq to p parameters: gp, closest to gq in Gp

Compression of gq to p parameters: hp, closest to gq in Hp

Compressed TNN hp is closer to pre-trained gq than gp
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Compression Using Invariant Structure In Deep

Neural Networks

Common Compression Techniques

Pruning, quantization, encoding and knowledge distillation
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Compression Using Invariant Structure In Deep

Neural Networks

Common Compression Techniques

Pruning, quantization, encoding and knowledge distillation

Low Rank Approximation

Complementary to other techniques

Reduce the number of parameters by a factor polynomial in the
dimension

◮ Caveat: only when the weight matrices (convolutional kernels) are low
rank

Exploiting other invariant structure via low rank approximation?

Periodicity, modulation and low rank?
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Idea for Compression using TNN
Given a pre-trained NN g ∈ Gq, how do we find a TNN h⋆ ∈ Hp that is as
close to g as possible?

Gp
Hp Gq

Hq

f

g

h⋆

Gp:compressed NN Hp:compressed TNN

Gq: NN Hq: TNN

1 Tensorization

2 Generalized Tensor Decomposition

3 Mapping NN to TNN
◮ End-to-End (E2E) Learning: traditional learning approach
◮ Sequential (Seq) Learning: learning each layer from bottom-up

sequentially
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Tensorization
Reshape the object to a higher order object

Identifying periodic and modulated structure by exploiting the low
rank structure in the reshaped matrix

Toy Example
[1, 2, 3, 1, 2, 3, 1, 2, 3]

Periodic structure

[1, 1, 1, 2, 2, 2, 3, 3, 3]

Modulated structure

{Invariant structures reshape

Low-rank structure

=
 1, 1, 1

 2, 2, 2

 3, 3, 3[ ]
 1, 1, 1

 2, 2, 2

 3, 3, 3

 1

 2

 3[ ]
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Tensor Diagram

a

Scalar a ∈ R

v
I ′

′

Vector v ∈ R
I′

′

M
I ′J ′

Matrix M ∈ R
I′×J ′

T IJ

K

Tensor T ∈ R
I×J×K

Reshape v to M to T

◮ I ′
′

= I ′ × J ′ = I × J ×K
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Higher Order Tensor Decompositions
m-order tensor T ∈ R

I0×I1×···×Im−1
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Higher Order Tensor Decompositions
m-order tensor T ∈ R

I0×I1×···×Im−1

CANDECOMP/PARAFAC (CP) Decomposition

Factorize a tensor into sum of rank-1 tensors

Rank-1 tensor is defined as outer product of multiple vectors

T =
R−1
∑

r=0
v
(0)
r ⊗ · · · ⊗ v

(m−1)
r

=

v
(0) ⊗ v

(1) ⊗ v
(2)

v
(0)

v
(1)v

(2)
= + +

[v(0) ⊗ v
(1) ⊗ v

(2)]i1,i2,i3 = v
(0)
i1

v
(1)
i2

v
(2)
i3

Rank-1 tensor

2
∑

r=0
v
(0)
r v

(1)
r v

(2)
r

Rank-3 tensor 17 / 25



Compression of Convolutional Layer w/ Tensor Decompositions

Convolutional Kernel: K ∈ R
H×W×S×T

S

U

X Y

K

H W

T
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TK Decomposition on the Kernel

TK: Decompose K into 1 core tensor, 2
factor tensors
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∑
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TT: Decompose K into 4 factor tensors

Ki,j,s,t =
Rs−1
∑

rs=0

R−1
∑

r=0

Rt−1
∑

rt=0
KS

s,rs
KH

rs,i,r
KW

r,j,rt
KT

rt,t

# of param.: HWST→

SRs+HRsR+WRtR+RtT

KS KH
KW KT

H W

Rs R Rt

S T
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Reshaped Tensor Decomposition— Narrower &

Deeper Nets

M N

U

K

XX Y

H W

S

T

Uncompressed

U

KS KH KW KT

X Y

H W

S

T

Rs R Rt

Compressed via TT
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H
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R0 R1

R2

Compressed via r-TT
(m = 3)

TT Decomposition on the Reshaped Kernel
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Low Rank Structure?

Comparisons of Eigenvalue Spectra

CP-VGG and CP-WRN are TNNs
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Experiments - Compress CIFAR10 Resnet-32

Successful Compression of CIFAR10 Resnet-32 Network (Su, Li,

Bhattacharjee & H., 2018)

Compression rate Compression rate
5% 10% 20% 40% 2% 5% 10% 20%

SVD 83.09 87.27 89.58 90.85 r-TR† - 80.80 - 90.60
CP 84.02 86.93 88.75 88.75 r-CP 85.7 89.86 91.28 -
TK 83.57 86.00 88.03 89.35 r-TK 61.06 71.34 81.59 87.11
TT 77.44 82.92 84.13 86.64 r-TT 78.95 84.26 87.89 -

Testing accuracies of tensor methods under compression rates.

The uncompressed network achieves 93.2% accuracy.

CIFAR10 Resnet-32 has 0.46M parameters that have to be trained
and retained during testing.
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Experiments - Convergence Rate
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Convergence rate for Seq vs. E2E compression on CIFAR10.
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Experiments - Compress ImageNet Resnet-50

Successful Compression of ImageNet Resnet-50 Network (Su, Li,

Bhattacharjee & H., 2018)

Uncompressed TT (E2E) r-TT (Seq)
# samples # params.: 25M # params.: 2.5M # params.: 2.5M
0.24M 4.22 2.78 44.35
0.36M 6.23 3.99 46.98
0.60M 9.01 7.48 49.92
1.20M 17.3 12.80 52.59
2.40M 30.8 18.17 54.00

Testing accuracy of tensor methods compared to the uncompressed
ImageNet Resnet-50.
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Summary

1 Extends traditional NN via a new framework TNN which
◮ naturally preserve multi-dimensional structures of the input data (such

as videos)
◮ effectively compress existing NN by exploiting additional invariant

structures

2 Introduce a system of generalized tensor algebra and generalized
tensor operations for

◮ efficient learning and prediction in TNNs
◮ deriving and analyze backpropagation rules for generalized tensor

operations.

3 Interpretations of famous neural network architectures using TNNs.

Arxiv: 1805.10352
Code: github.com/FurongHuang/TTP-NeuralNets-Compression
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