Tensorial Neural Networks: Generalization of Neural Networks and Applications to Model Compression

Furong Huang

University of Maryland

furongh@cs.umd.edu

Joint work with Jiahao Su, Jingling Li and Bobby Bhattacharjee

Neural Network - Nonlinear Function Approximation

Image classification

Speech recognition

Text processing

Success of Deep Neural Networks

(日) (同) (三) (三) (三)

2/25

- computation power growth
- enormous labeled data

Neural Network - Nonlinear Function Approximation

Image classification

Speech recognition

Text processing

Success of Deep Neural Networks

- computation power growth
- enormous labeled data

Express Power

- linear composition vs nonlinear composition
- shallow network vs deep structure

Revolution of Depth

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

- Deeper and wider architectures 0
- Large number of model parameters ٩

・ロット (雪) () () () () 3 / 25

- 3

Challenges For Large Deep Neural Network

Learning

- Learning takes longer, might not converge, susceptible to vanishing/exploding gradients, etc
- One-time cost.

Challenges For Large Deep Neural Network

Learning

- Learning takes longer, might not converge, susceptible to vanishing/exploding gradients, etc
- One-time cost.

Test

Requires large amount of computation and memory storage.
 Hard to deploy on constrained devices such as smart phones or IoT device.

(日) (圖) (E) (E) (E)

4 / 25

• Repeated high-cost in predictions.

Challenges For Large Deep Neural Network

Learning

- Learning takes longer, might not converge, susceptible to vanishing/exploding gradients, etc
- One-time cost.

Test

- Requires large amount of computation and memory storage.
 Hard to deploy on constrained devices such as smart phones or IoT device.
- Repeated high-cost in predictions.

How to design NN models with compact architectures, but similar expressive power as large models?

How to design NN models with compact architectures, but similar expressive power as large models?

Popular Approaches

- Compress well-trained neural networks
- Find better neural network architectures

Tensorial Neural Networks (TNNs)

- Achieve both compression and better architecture
- Generalize { matrix-vector product convolution to general tensor
 operations
- New tensor algebra: extend existing operations with low order operands to those with high order operands

What is a tensor? How to denote tensors effectively?

Multi-dimensional Array

- Tensor Higher order matrix
- The number of dimensions is called tensor order.

6 / 25

What is a tensor? How to denote tensors effectively?

Multi-dimensional Array

Tensor Diagram

Scalar $a \in \mathbb{R}$

- Tensor Higher order matrix
- The number of dimensions is called tensor order.

Vector $\mathbf{v} \in \mathbb{R}^{I}$

Tensor Product

- $[\mathbf{a} \otimes \mathbf{b}]_{i_1,i_2} = \mathbf{a}_{i_1} \mathbf{b}_{i_2}$
- Rank-1 matrix

- $\begin{bmatrix} \mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c} \end{bmatrix}_{i_1, i_2, i_3} \\ \mathbf{c}_{i_3} \\ = \mathbf{a}_{i_1} \\ \mathbf{b}_{i_2} \\ \mathbf{c}_{i_3} \\ \mathbf{c}_{i_3} \\ \mathbf{b}_{i_2} \\ \mathbf{c}_{i_3} \\$
- $[\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c}]_{i_1, i_2, i_3} = \mathbf{a}_{i_1} \mathbf{b}_{i_2} \mathbf{c}_{i_3}$
- Rank-1 tensor
- Existing tensor operations are only defined on lower-order ${\cal X}$ and ${\cal Y}$ such as matrices and vectors.

Generalized Tensor Operations

Generalized tensor operations on High-order tensor operands Mode-(0,1) tensor contraction $\mathcal{X} \times^0_1 \mathcal{Y} \to \mathcal{T}^1$

Generalized Tensor Operations

<ロ> (日) (日) (日) (日) (日)

8 / 25

 $\mathcal{T}_{j_0,i_1,i_2}^2 = \sum_r \mathcal{X}_{r,i_1,i_2} \mathbf{M}_{j_0,r}$

Generalized Tensor Operations

Generalized tensor operations on High-order tensor operands Mode-0 tensor product $Mode_{(0,1)}$ tensor contraction $\mathcal{X} \times^0_1 \mathcal{Y} \to \mathcal{T}^1$

 $Mode_{(0,1)}$ tensor convolution $\mathcal{X} *^0_1 \mathcal{V} \to \mathcal{T}^3$

 $\mathcal{X} imes_0 \mathbf{M} o \mathcal{T}^2$

$$\mathcal{T}_{j_0,i_1,i_2}^2 = \sum_r \mathcal{X}_{r,i_1,i_2} \mathbf{M}_{j_0,r}$$

Mode-(0,1) tensor partial outer product $\mathcal{X} \otimes^0_1 \mathcal{Y} \to \mathcal{T}^4$

Similar definitions apply to general mode-(i, j) tensor operations.

Outline

2 Tensorial Neural Networks

3 Compression of Neural Networks

4 Experimental Results

One-layer of CNN vs One-layer of TNN

CNN vs TNN

Relationship between NNs and TNNs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Relationship between NNs and TNNs

• Learning of a NN with q parameters: g^q , closest to f in \mathcal{G}^q

Relationship between NNs and TNNs \mathcal{G}^{p} :compressed NN \mathcal{H}^{p} :compressed TNN

• Learning of a NN with q parameters: g^q , closest to f in \mathcal{G}^q

• Learning of a TNN with q parameters: h^q , closest to f in \mathcal{H}^q

Relationship between NNs and TNNs

• Learning of a NN with q parameters: g^q , closest to f in \mathcal{G}^q

• Learning of a TNN with q parameters: h^q , closest to f in \mathcal{H}^q

 h^q is closer to f than g^q

Relationship between NNs and TNNs $\mathcal{G}^p: \text{compressed NN} \xrightarrow{\mathcal{H}^p: \text{compressed TNN}} \xrightarrow{\mathfrak{G}^p: \mathcal{H}^p: \mathcal{G}^q: \mathcal{H}^p: \mathcal{G}^q: \mathcal{H}^q: \mathcal$

- Learning of a NN with q parameters: g^q , closest to f in \mathcal{G}^q
- Learning of a TNN with q parameters: h^q , closest to f in \mathcal{H}^q

 h^q is closer to f than g^q

• Compression of g^q to p parameters: g^p , closest to g^q in \mathcal{G}^p

Relationship between NNs and TNNs \mathcal{G}^{p} :compressed NN \mathcal{G}^{p} : \mathcal{H}^{p} :compressed TNN \mathcal{G}^{p} \mathcal{H}^{p} : \mathcal{H}^{p} : \mathcal{H}^{q} $\mathcal{H$

- Learning of a NN with q parameters: g^q , closest to f in \mathcal{G}^q
- Learning of a TNN with q parameters: h^q , closest to f in \mathcal{H}^q

h^q is closer to f than g^q

- Compression of g^q to p parameters: g^p , closest to g^q in \mathcal{G}^p
- **Compression** of g^q to p parameters: h^p , closest to g^q in \mathcal{H}^p

Relationship between NNs and TNNs \mathcal{G}^{p} :compressed NN \mathcal{G}^{p} :compressed NN \mathcal{G}^{p} :compressed TNN \mathcal{G}^{p} : \mathcal{H}^{p} :compressed TNN \mathcal{G}^{q} : NN \mathcal{H}^{p} :compressed TNN \mathcal{H}^{p} :compressed TNN

- Learning of a NN with q parameters: g^q , closest to f in \mathcal{G}^q
- Learning of a TNN with q parameters: h^q , closest to f in \mathcal{H}^q

h^q is closer to f than g^q

- Compression of g^q to p parameters: g^p , closest to g^q in \mathcal{G}^p
- **Compression** of g^q to p parameters: h^p , closest to g^q in \mathcal{H}^p

Compressed TNN h^p is closer to pre-trained g^q than g^p

Outline

Introduction

2 Tensorial Neural Networks

4 Experimental Results

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Compression Using Invariant Structure In Deep Neural Networks

Common Compression Techniques

• Pruning, quantization, encoding and knowledge distillation

Compression Using Invariant Structure In Deep Neural Networks

Common Compression Techniques

• Pruning, quantization, encoding and knowledge distillation

Low Rank Approximation

- Complementary to other techniques
- Reduce the number of parameters by a factor **polynomial** in the dimension
 - Caveat: only when the weight matrices (convolutional kernels) are low rank

Compression Using Invariant Structure In Deep Neural Networks

Common Compression Techniques

• Pruning, quantization, encoding and knowledge distillation

Low Rank Approximation

- Complementary to other techniques
- Reduce the number of parameters by a factor **polynomial** in the dimension
 - Caveat: only when the weight matrices (convolutional kernels) are low rank

Exploiting other invariant structure via low rank approximation? Periodicity, modulation and low rank?

Idea for Compression using TNN

Given a pre-trained NN $g \in \mathcal{G}^q$, how do we find a TNN $h^* \in \mathcal{H}^p$ that is as close to g as possible?

Tensorization

- ② Generalized Tensor Decomposition
- Mapping NN to TNN
 - End-to-End (E2E) Learning: traditional learning approach
 - Sequential (Seq) Learning: learning each layer from bottom-up sequentially

Tensorization

Reshape the object to a higher order object

• Identifying periodic and modulated structure by exploiting the low rank structure in the reshaped matrix

Tensorization

Reshape the object to a higher order object

• Identifying periodic and modulated structure by exploiting the low rank structure in the reshaped matrix

16/25

Higher Order Tensor Decompositions

m-order tensor $\mathcal{T} \in \mathbb{R}^{I_0 imes I_1 imes \cdots imes I_{m-1}}$

Higher Order Tensor Decompositions

m-order tensor $\mathcal{T} \in \mathbb{R}^{I_0 imes I_1 imes \cdots imes I_{m-1}}$

CANDECOMP/PARAFAC (CP) Decomposition

- Factorize a tensor into sum of rank-1 tensors
- Rank-1 tensor is defined as outer product of multiple vectors

- $[\mathbf{v}^{(0)} \otimes \mathbf{v}^{(1)} \otimes \mathbf{v}^{(2)}]_{i_1, i_2, i_3} = \mathbf{v}^{(0)}_{i_1} \mathbf{v}^{(1)}_{i_2} \mathbf{v}^{(2)}_{i_3}$
- Rank-1 tensor

Rank-3 tensor

17 / 25

• Convolutional Kernel: $\mathcal{K} \in \mathbb{R}^{H \times W \times S \times T}$

- Convolutional Kernel: $\mathcal{K} \in \mathbb{R}^{H \times W \times S \times T}$
- Input tensor: $\mathcal{U} \in \mathbb{R}^{X \times Y \times S}$

- Convolutional Kernel: $\mathcal{K} \in \mathbb{R}^{H \times W \times S \times T}$
- Input tensor: $\mathcal{U} \in \mathbb{R}^{X \times Y \times S}$
- Map the input tensor $\mathcal{U} \in \mathbb{R}^{N \times 1 \times 0}$ Map the input tensor \mathcal{U} to an **output** tensor $\mathcal{V} \in \mathbb{R}^{X' \times Y' \times T}$:

$$\mathcal{V}_{x,y,t} = \sum_{s=0}^{S-1} \sum_{i,j} \mathcal{K}_{i,j,s,t} \ \mathcal{U}_{x-i,y-j,s}.$$

- Convolutional Kernel: $\mathcal{K} \in \mathbb{R}^{H \times W \times S \times T}$
- Input tensor: $\mathcal{U} \in \mathbb{R}^{X \times Y \times S}$
- Map the input tensor \mathcal{U} to an **output** tensor $\mathcal{V} \in \mathbb{R}^{X' \times Y' \times T}$:

$$\mathcal{V}_{x,y,t} = \sum_{s=0}^{S-1} \sum_{i,j} \mathcal{K}_{i,j,s,t} \ \mathcal{U}_{x-i,y-j,s}.$$

• **CP**: Decompose kernel \mathcal{K} into 3 factor tensors

•
$$\mathcal{K}_{i,j,s,t} = \sum_{r=0}^{R-1} \mathcal{K}_{s,r}^S \ \mathcal{K}_{i,j,r}^C \ \mathcal{K}_{r,t}^T$$

• # of param.: $HWST \rightarrow (HW + S + T)R$

- Convolutional Kernel: $\mathcal{K} \in \mathbb{R}^{H \times W \times S \times T}$
- Input tensor: $\mathcal{U} \in \mathbb{R}^{X \times Y \times S}$
- Map the input tensor \mathcal{U} to an **output** tensor $\mathcal{V} \in \mathbb{R}^{X' \times Y' \times T}$:

$$\mathcal{V}_{x,y,t} = \sum_{s=0}^{S-1} \sum_{i,j} \mathcal{K}_{i,j,s,t} \ \mathcal{U}_{x-i,y-j,s}.$$

18/25

TK Decomposition on the Kernel

• TK: Decompose K into 1 core tensor, 2 factor tensors

•
$$\mathcal{K}_{i,j,s,t} = \sum_{r_s=0}^{R_s-1} \sum_{r_t=0}^{R_t-1} \mathcal{K}_{s,r_s}^S \ \mathcal{K}_{i,j,r_s,r_t}^C \ \mathcal{K}_{r_t,t}^T$$

• # of param.: $HWST \rightarrow SR_s + HWR_sR_t + R_tT$

(日) (同) (三) (三) (三)

- Convolutional Kernel: $\mathcal{K} \in \mathbb{R}^{H \times W \times S \times T}$
- Input tensor: $\mathcal{U} \in \mathbb{R}^{X \times Y \times S}$
- Map the input tensor $\mathcal{U} \in \mathbb{R}$ Map the input tensor \mathcal{U} to an **output** tensor $\mathcal{V} \in \mathbb{R}^{X' \times Y' \times T}$:

$$\mathcal{V}_{x,y,t} = \sum_{s=0}^{S-1} \sum_{i,j} \mathcal{K}_{i,j,s,t} \ \mathcal{U}_{x-i,y-j,s}.$$

18/25

TT Decomposition on the Kernel

• **TT**: Decompose \mathcal{K} into 4 factor tensors

•
$$\mathcal{K}_{i,j,s,t} =$$

 $\sum_{r_s=0}^{R_s-1} \sum_{r=0}^{R-1} \sum_{r_t=0}^{R_t-1} \mathcal{K}_{s,r_s}^S \mathcal{K}_{r_s,i,r}^H \ \mathcal{K}_{r,j,r_t}^W \ \mathcal{K}_{r_t,t}^T$
• # of param.: $HWST \rightarrow$
 $SR_s + HR_sR + WR_tR + R_tT$

Reshaped Tensor Decomposition— Narrower & Deeper Nets

TT Decomposition on the Reshaped Kernel

• Param. $#:HWST \rightarrow SR_s + HR_sR + WR_tR + R_tT \rightarrow (m(ST)^{\frac{1}{m}}R + HW)R$

Low Rank Structure?

Comparisons of Eigenvalue SpectraCP-VGG and CP-WRN are TNNs

Outline

Introduction

- 2 Tensorial Neural Networks
- **3** Compression of Neural Networks

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ り へ (* 21 / 25

Experiments - Compress CIFAR10 Resnet-32

Successful Compression of CIFAR10 Resnet-32 Network (Su, Li,

Bhattacharjee & H., 2018)

	Compression rate					Compression rate			
				40%		2%		10%	
SVD	83.09	87.27	89.58	90.85	r-TR [†]	-	80.80	-	90.60
CP	84.02	86.93	88.75	88.75	r-CP	85.7	89.86	91.28	-
ΤK	83.57	86.00	88.03	89.35	r-TK	61.06	71.34	81.59	87.11
TT	77.44	82.92	84.13	86.64	r-TT	78.95	84.26	87.89	-

- Testing accuracies of tensor methods under compression rates.
- The uncompressed network achieves 93.2% accuracy.
- CIFAR10 Resnet-32 has 0.46M parameters that have to be trained and retained during testing.

Experiments - Convergence Rate

Experiments - Compress ImageNet Resnet-50

Successful Compression of ImageNet Resnet-50 Network (Su, Li, Bhattacharjee & H., 2018)

	Uncompressed	TT (E2E)	r-TT (Seq)	
# samples	# params.: 25M	# params.: 2.5M	# params.: 2.5M	
0.24M	4.22	2.78	44.35	
0.36M	6.23	3.99	46.98	
0.60M	9.01	7.48	49.92	
1.20M	17.3	12.80	52.59	
2.40M	30.8	18.17	54.00	

• Testing accuracy of tensor methods compared to the uncompressed ImageNet Resnet-50.

Summary

Sector Extends traditional NN via a new framework TNN which

- naturally preserve multi-dimensional structures of the input data (such as videos)
- effectively compress existing NN by exploiting additional invariant structures
- Introduce a system of generalized tensor algebra and generalized tensor operations for
 - efficient learning and prediction in TNNs
 - deriving and analyze backpropagation rules for generalized tensor operations.
- Interpretations of famous neural network architectures using TNNs.

Arxiv: 1805.10352

 $Code: \ github.com/FurongHuang/TTP-NeuralNets-Compression$